

Harpeth River – TMDL Endpoint Discussion

Tim A. Wool
US EPA – Region 4
Atlanta, GA
wool.tim@epa.gov

Overview

- Life of a TMDL Developer
 - Listing for Nutrients
 - Got Listed
 - What is the Standard?
 - Total Nitrogen
 - Total Phosphorus
 - Chlorophyll a
 - Dissolved Oxygen
 - What do you mean a narrative criteria
 - Imbalance, huh?
 - Free From
 - I need a number!

Developing a TMDL Target

- Is a TMDL Target the Same as WQS?
 - No, it is an interpretation of a narrative
 - Imbalance of flora and fauna
 - Free from . . .
 - May not consider all aquatic life use support
 - May not consider downstream protection
- TMDL is not a Standards Setting Action

Expert Solicitation

Pro's

- Expert Solicitation
 - Local knowledge
 - Could be historical Condition
- Could build consensus with stakeholders for endpoints
- May bring key scientific information about the system

- Does not determine assimilative capacity
- May not consider all stressors
- May not consider all aquatic life use support
- May not consider downstream uses

Statistical – Regional/EcoRegion

Pro's

- Make use of large availability of data
 - Accounts for spatial variability
 - Represents range of nutrient conditions
- Can be easily done
 - Percentile Ranking

- Data availability
 - Certain regions
- Does not take into account local conditions
 - Light
 - Nutrient species
- Differentiate between endpoints
 - Chl a
 - Benthic Algae
 - Dissolved Oxygen

Statistical – Reference Conditions

Pro's

- Relatively easy to do
- Uses stream conditions from surrounding area
 - Least Impacted
 - No anthropogenic sources
 - Not impaired
- Could take into account local conditions
 - Hydrology
 - Environmental

- Like waterbody might not be impaired
- May not consider all ALUS
- May not consider downstream uses
- Difficult to define reference stream
- Limited by data

Statistical -- Regression

Pro's

- Easily done
- Links stressors to response variables
- Uses site specific data for the waterbody

- May not account for all response variables
- Constrained by the data availability
- Confidence in the statistical fit
- Difficult to extrapolate to other conditions
- May not protect downstream

Mechanistic Modeling

Pro's

- Linkage between stressors and response variables
 - Chlorophyll a (algae, benthic algae, macrophytes)
 - Light
 - Dissolved Oxygen
- Can extrapolate
 - Environmental Conditions
 - Current vs. WQS Condition
 - Response in Time
 - Duration and Frequency

- Time consuming
- Costly
- Can be misapplied

Utility of Mechanistic Models

- Simplistic Representation of Reality
 - Cannot Simulate "Everything"
 - All Models are Wrong
- Interpolate
 - Known and Unknown
- Provides Linkage between
 - Loads and Response Variables
- Can Determine Important Processes
 - Nutrients/DO/Algae/Light
 - Management Strategies
- Determine Load Reductions to meet WQS
 - Never to Exceed
 - X% Exceedence
 - Duration, Frequency and Magnitude
- Evaluate Best Management Practices

Conventional Water Quality

Important Processes

- Nutrient Dynamics
 - Nitrogen (Ammonia, Nitrate, DON, PON)
 - Phosphorus (Orthophosphate, DOP, POP)
 - Silica (Dissolved, Particulate)
- Algal Dynamics
 - Multiple Algal Groups (Green, Blue Green, Diatoms)
 - Light (Algal Self Shading, DOC, TSS)
- Dissolved Oxygen Dynamics
 - Multiple BOD (Slow, Med, Fast or Biotic, Watershed, WWTP)
 - Reaeration (Wind, Hydraulic)
 - Sediment Diagenesis (Oxygen Consumption, Nutrient Fluxes)
- pH/TDS/Temperature

Using Mechanistic Models for TMDL

- Critical Conditions (Steady State)
 - Typically used for criteria development
- Nutrients
 - Usually not a critical condition
 - Seasonal Variation
 - Need to consider varying meteorological conditions
 - Low/Ave/High Flow years
 - Long-term Continuous Simulation
 - Should allow perturbations

Stressor/Response Relationship

Environmental Protection

Potential End Points with WASP

- Dissolved Oxygen/CBOD
- Nutrients (Nitrogen, Phosphorus, Silica)
- Biomass
 - Phytoplankton
 - Periphyton
- pH
- Light

Ways to Express End Points

Questions?

